Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 125
1.
J Biomed Inform ; : 104649, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38697494

OBJECTIVE: Automated identification of eligible patients is a bottleneck of clinical research. We propose Criteria2Query (C2Q) 3.0, a system that leverages GPT-4 for the semi-automatic transformation of clinical trial eligibility criteria text into executable clinical database queries. MATERIALS AND METHODS: C2Q 3.0 integrated three GPT-4 prompts for concept extraction, SQL query generation, and reasoning. Each prompt was designed and evaluated separately. The concept extraction prompt was benchmarked against manual annotations from 20 clinical trials by two evaluators, who later also measured SQL generation accuracy and identified errors in GPT-generated SQL queries from 5 clinical trials. The reasoning prompt was assessed by three evaluators on four metrics: readability, correctness, coherence, and usefulness, using corrected SQL queries and an open-ended feedback questionnaire. RESULTS: Out of 518 concepts from 20 clinical trials, GPT-4 achieved an F1-score of 0.891 in concept extraction. For SQL generation, 29 errors spanning seven categories were detected, with logic errors being the most common (n = 10; 34.48 %). Reasoning evaluations yielded a high coherence rating, with the mean score being 4.70 but relatively lower readability, with a mean of 3.95. Mean scores of correctness and usefulness were identified as 3.97 and 4.37, respectively. CONCLUSION: GPT-4 significantly improves the accuracy of extracting clinical trial eligibility criteria concepts in C2Q 3.0. Continued research is warranted to ensure the reliability of large language models.

2.
Appl Clin Inform ; 15(2): 357-367, 2024 Mar.
Article En | MEDLINE | ID: mdl-38447965

BACKGROUND: Narrative nursing notes are a valuable resource in informatics research with unique predictive signals about patient care. The open sharing of these data, however, is appropriately constrained by rigorous regulations set by the Health Insurance Portability and Accountability Act (HIPAA) for the protection of privacy. Several models have been developed and evaluated on the open-source i2b2 dataset. A focus on the generalizability of these models with respect to nursing notes remains understudied. OBJECTIVES: The study aims to understand the generalizability of pretrained transformer models and investigate the variability of personal protected health information (PHI) distribution patterns between discharge summaries and nursing notes with a goal to inform the future design for model evaluation schema. METHODS: Two pretrained transformer models (RoBERTa, ClinicalBERT) fine-tuned on i2b2 2014 discharge summaries were evaluated on our data inpatient nursing notes and compared with the baseline performance. Statistical testing was deployed to assess differences in PHI distribution across discharge summaries and nursing notes. RESULTS: RoBERTa achieved the optimal performance when tested on an external source of data, with an F1 score of 0.887 across PHI categories and 0.932 in the PHI binary task. Overall, discharge summaries contained a higher number of PHI instances and categories of PHI compared with inpatient nursing notes. CONCLUSION: The study investigated the applicability of two pretrained transformers on inpatient nursing notes and examined the distinctions between nursing notes and discharge summaries concerning the utilization of personal PHI. Discharge summaries presented a greater quantity of PHI instances and types when compared with narrative nursing notes, but narrative nursing notes exhibited more diversity in the types of PHI present, with some pertaining to patient's personal life. The insights obtained from the research help improve the design and selection of algorithms, as well as contribute to the development of suitable performance thresholds for PHI.


Narration , Humans , Electronic Health Records , Models, Theoretical
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 308: 123800, 2024 Mar 05.
Article En | MEDLINE | ID: mdl-38145583

D-A molecules find extensive use in intelligent stimulus-response systems due to their exceptional attributes, including high sensitivity, rapid response, wide compatibility, and structural adaptability. The strength of Intramolecular Charge Transfer (ICT) plays a pivotal role in determining the performance of these devices. To enhance the ICT strength and explore new applications for D-A molecules, we meticulously designed a pair of symmetric dimethylamino-substituted bi-1,3,4-oxadiazole derivatives (DMAOXD and DMAOXDBEN). These symmetric D-A-A-D molecules, with strong electron donor terminals, displayed a modest redshift of less than 25 nm in the UV-vis absorption spectra. However, there was a significant redshift in the emission spectra (140 nm for DMAOXD and 170 nm for DMAOXDBEN) when transitioning from cyclohexane to dimethyl sulfoxide, indicating a pronounced ICT characteristic. Theoretical calculations support the idea that the dimethylaminophenyl unit serves as an electron donor in both DMAOXD and DMAOXDBEN, while the 1,3,4-oxadiazole and central benzene ring act as acceptors. The pronounced ICT characteristic observed in DMAOXD and DMAOXDBEN can be attributed to long-distance electron transfer. Additionally, it's noteworthy that the emission of DMAOXD and DMAOXDBEN solution samples can be quenched by adding trifluoroacetic acid (TFA) and restored by the addition of triethylamine (TEA). Inspired by this, a pattern created with ink samples containing DMAOXD and DMAOXDBEN can be concealed through fumigation with TFA and subsequently revealed by treating them with TEA, suggesting their potential use in data encryption.

4.
Res Sq ; 2023 Nov 22.
Article En | MEDLINE | ID: mdl-38045411

Rare disease patients often endure prolonged diagnostic odysseys and may still remain undiagnosed for years. Selecting the appropriate genetic tests is crucial to lead to timely diagnosis. Phenotypic features offer great potential for aiding genomic diagnosis in rare disease cases. We see great promise in effective integration of phenotypic information into genetic test selection workflow. In this study, we present a phenotype-driven molecular genetic test recommendation (Phen2Test) for pediatric rare disease diagnosis. Phen2Test was constructed using frequency matrix of phecodes and demographic data from the EHR before ordering genetic tests, with the objective to streamline the selection of molecular genetic tests (whole-exome / whole-genome sequencing, or gene panels) for clinicians with minimum genetic training expertise. We developed and evaluated binary classifiers based on 1,005 individuals referred to genetic counselors for potential genetic evaluation. In the evaluation using the gold standard cohort, the model achieved strong performance with an AUROC of 0.82 and an AUPRC of 0.92. Furthermore, we tested the model on another silver standard cohort (n=6,458), achieving an overall AUROC of 0.72 and an AUPRC of 0.671. Phen2Test was adjusted to align with current clinical guidelines, showing superior performance with more recent data, demonstrating its potential for use within a learning healthcare system as a genomic medicine intervention that adapts to guideline updates. This study showcases the practical utility of phenotypic features in recommending molecular genetic tests with performance comparable to clinical geneticists. Phen2Test could assist clinicians with limited genetic training and knowledge to order appropriate genetic tests.

5.
Biochem Pharmacol ; 218: 115917, 2023 12.
Article En | MEDLINE | ID: mdl-37952897

Antimicrobial resistance (AMR) constitutes a significant global threat to human health. In recent years, there has been a concerning surge in infections caused by multidrug-resistant bacteria, highlighting the pressing need to urgently explore novel and effective alternatives to conventional antibiotics. Antimicrobial peptides (AMPs) have emerged as a focal point of research, capturing significant attention as promising antimicrobial agents. In this study, we have identified a novel cationic antimicrobial peptide (AMP) named Scyreptin1-30, derived from the marine invertebrate Scylla paramamosain. The results showed that Scyreptin1-30 exhibits a broad-spectrum antimicrobial activity, demonstrating significant potency against both bacteria and fungi, and even against the clinically isolated multidrug-resistant bacteria Pseudomonas aeruginosa. Moreover, Scyreptin1-30 exhibited rapid bactericidal kinetic. The results of antibacterial mechanism showed that Scyreptin1-30 destroyed the integrity of bacterial membranes, leading to bacterial death and exhibited potent anti-biofilm activity against P. aeruginosa. The activity of Scyreptin1-30 against bacteria had a favorable thermal stability, displayed a certain ion tolerance, and showed no discernible cytotoxicity when assessed against both the mammalian cell line HEK293T and the fish cell lines ZF4. In an In vivo study, Scyreptin1-30 exhibited a remarkably reduction in the bacterial load caused by multidrug-resistant P. aeruginosa at the site of infection, and promoted wound healing in a mouse model of burn infection. This study indicated that Scyreptin1-30 holds promise as an effective antibacterial agent, potentially serving as a topical skin treatment against multidrug-resistant bacterial infections, including those caused by P. aeruginosa.


Anti-Infective Agents , Burns , Pseudomonas Infections , Animals , Mice , Humans , Pseudomonas aeruginosa , Antimicrobial Peptides , HEK293 Cells , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Infective Agents/pharmacology , Pseudomonas Infections/drug therapy , Bacteria , Burns/drug therapy , Burns/microbiology , Microbial Sensitivity Tests , Mammals
6.
Front Mol Neurosci ; 16: 1079529, 2023.
Article En | MEDLINE | ID: mdl-37575969

Introduction: The pathogenic gene CDH23 plays a pivotal role in tip links, which is indispensable for mechanoelectrical transduction in the hair cells. However, the underlying molecular mechanism and signal regulatory networks that influence deafness is still largely unknown. Methods: In this study, a congenital deafness family, whole exome sequencing revealed a new mutation in the pathogenic gene CDH23, subsequently; the mutation has been validated using Sanger sequencing method. Then CRISPR/Cas9 technology was employed to knockout zebrafish cdh23 gene. Startle response experiment was used to compare with wide-type, the response to sound stimulation between wide-type and cdh23-/-. To further illustrate the molecular mechanisms underlying congenital deafness, comparative transcriptomic profiling and multiple bioinformatics analyses were performed. Results: The YO-PRO-1 assay result showed that in cdh23 deficient embryos, the YO-PRO-1 signal in inner ear and lateral line neuromast hair cells were completely lost. Startle response experiment showed that compared with wide-type, the response to sound stimulation decreased significantly in cdh23 mutant larvae. Comparative transcriptomic showed that the candidate genes such as atp1b2b and myof could affect hearing by regulating ATP production and purine metabolism in a synergetic way with cdh23. RT-qPCR results further confirmed the transcriptomics results. Further compensatory experiment showed that ATP treated cdh23-/- embryos can partially recover the mutant phenotype. Conclusion: In conclusion, our study may shed light on deciphering the principal mechanism and provide a potential therapeutic method for congenital hearing loss under the condition of CDH23 mutation.

7.
J Bone Oncol ; 41: 100493, 2023 Aug.
Article En | MEDLINE | ID: mdl-37501717

Osteosarcoma (OS) is the most common primary bone cancer in children and young adults, patient survival rates have not improved in recent decades. To further understand the interrelationship between different cell types in the tumor microenvironment of osteosarcoma, we comprehensively analyzed single-cell sequencing data from six patients with untreated osteosarcoma. Nine major cell types were identified from a total of 46,046 cells based on unbiased clustering of gene expression profiles and canonical markers. Osteosarcoma from different patients display heterogeneity in cellular composition. Myeloid cells were the most commonly represented cell type, followed by osteoblastic and TILs. Copy number variation (CNV) results identified amplifications and deletions in malignant osteoblastic cells and fibroblasts. Trajectory analysis based on RNA velocity showed that osteoclasts in the OS microenvironment could be differentiated from myeloid cells. Furthermore, we explored the intercellular communications in OS microenvironment and identified multiple ligand-receptor pairs between myeloid cells, osteoblastic cells and their cells, including 21 ligand-receptor pair genes that significantly associated with survival outcomes. Importantly, we found chemotherapy may have an effect on cellular communication in the OS microenvironment by analyzing single-cell sequencing data from seven primary osteosarcoma patients who received chemotherapy. We believe these observations will improve our understanding of potential mechanisms of microenvironment contributions to OS progression and help identify potential targets for new treatment development in the future.

8.
Antimicrob Agents Chemother ; 67(6): e0002223, 2023 06 15.
Article En | MEDLINE | ID: mdl-37162345

The emergence of azole-resistant and biofilm-forming Candida spp. contributes to the constantly increasing incidence of vulvovaginal candidiasis. It is imperative to explore new antifungal drugs or potential substituents, such as antimicrobial peptides, to alleviate the serious crisis caused by resistant fungi. In this study, a novel antimicrobial peptide named Scyampcin44-63 was identified in the mud crab Scylla paramamosain. Scyampcin44-63 exhibited broad-spectrum antimicrobial activity against bacteria and fungi, was particularly effective against planktonic and biofilm cells of Candida albicans, and exhibited no cytotoxicity to mammalian cells (HaCaT and RAW264.7) or mouse erythrocytes. Transcriptomic analysis revealed four potential candidacidal modes of Scyampcin44-63, including promotion of apoptosis and autophagy and inhibition of ergosterol biosynthesis and the cell cycle. Further study showed that Scyampcin44-63 caused damage to the plasma membrane and induced apoptosis and cell cycle arrest at G2/M in C. albicans. Scanning and transmission electron microscopy demonstrated that Scyampcin44-63-treated C. albicans cells were deformed with vacuolar expansion and destruction of organelles. In addition, C. albicans cells pretreated with the autophagy inhibitor 3-methyladenine significantly delayed the candidacidal effect of Scyampcin44-63, suggesting that Scyampcin44-63 might contribute to autophagic cell death. In a murine model of vulvovaginal candidiasis, the fungal burden of vaginal lavage was significantly decreased after treatment with Scyampcin44-63.


Brachyura , Candidiasis, Vulvovaginal , Humans , Female , Mice , Animals , Candidiasis, Vulvovaginal/drug therapy , Candidiasis, Vulvovaginal/microbiology , Antimicrobial Peptides , Disease Models, Animal , Candida albicans , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Mammals
9.
Front Microbiol ; 14: 1129568, 2023.
Article En | MEDLINE | ID: mdl-37180261

In recent years, new emerging pathogenic microorganisms have frequently appeared in animals, including marine fish, possibly due to climate change, anthropogenic activities, and even cross-species transmission of pathogenic microorganisms among animals or between animals and humans, which poses a serious issue for preventive medicine. In this study, a bacterium was clearly characterized among 64 isolates from the gills of diseased large yellow croaker Larimichthys crocea that were raised in marine aquaculture. This strain was identified as K. kristinae by biochemical tests with a VITEK 2.0 analysis system and 16S rRNA sequencing and named K. kristinae_LC. The potential genes that might encode virulence-factors were widely screened through sequence analysis of the whole genome of K. kristinae_LC. Many genes involved in the two-component system and drug-resistance were also annotated. In addition, 104 unique genes in K. kristinae_LC were identified by pan genome analysis with the genomes of this strain from five different origins (woodpecker, medical resource, environment, and marine sponge reef) and the analysis results demonstrated that their predicted functions might be associated with adaptation to living conditions such as higher salinity, complex marine biomes, and low temperature. A significant difference in genomic organization was found among the K. kristinae strains that might be related to their hosts living in different environments. The animal regression test for this new bacterial isolate was carried out using L. crocea, and the results showed that this bacterium could cause the death of L. crocea and that the fish mortality was dose-dependent within 5 days post infection, indicating the pathogenicity of K. kristinae_LC to marine fish. Since K. kristinae has been reported as a pathogen for humans and bovines, in our study, we revealed a new isolate of K. kristinae_LC from marine fish for the first time, suggesting the potentiality of cross-species transmission among animals or from marine animals to humans, from which we would gain insight to help in future public prevention strategies for new emerging pathogens.

10.
Int J Mol Sci ; 24(6)2023 Mar 16.
Article En | MEDLINE | ID: mdl-36982761

In the study, a new gene homologous to the known antimicrobial peptide Scygonadin was identified in mud crab Scylla paramamosain and named SCY3. The full-length sequences of cDNA and genomic DNA were determined. Similar to Scygonadin, SCY3 was dominantly expressed in the ejaculatory ducts of male crab and the spermatheca of post-mating females at mating. The mRNA expression was significantly up-regulated after stimulation by Vibrio alginolyticus, but not by Staphylococcus aureus. The recombinant protein rSCY3 had a killing effect on Micrococcus luteus and could improve the survival rate of mud crabs infected with V. alginolyticus. Further analysis showed that rSCY3 interacted with rSCY1 or rSCY2 using Surface Plasmon Resonance (SPR, a technology for detecting interactions between biomolecules using biosensor chips) and Mammalian Two-Hybrid (M2H, a way of detecting interactions between proteins in vivo). Moreover, the rSCY3 could significantly improve the sperm acrosome reaction (AR) of S. paramamosain and the results demonstrated that the binding of rSCY3, rSCY4, and rSCY5 to progesterone was a potential factor affecting the sperm AR by SCYs on. This study lays the foundation for further investigation on the molecular mechanism of SCYs involved in both immunity and physiological effects of S. paramamosain.


Brachyura , Animals , Female , Male , Brachyura/genetics , Brachyura/metabolism , Acrosome Reaction , Semen , Spermatozoa , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Arthropod Proteins/genetics , Arthropod Proteins/pharmacology , Arthropod Proteins/chemistry , Immunity, Innate/genetics , Phylogeny , Mammals
11.
Fish Shellfish Immunol ; 134: 108649, 2023 Mar.
Article En | MEDLINE | ID: mdl-36849046

With the antibiotics prohibition in feedstuffs worldwide, antimicrobial peptides (AMPs) are considered a more promising substitute for antibiotics to be used as feed additives, and positive results have been reported in livestock feeding studies. However, whether dietary supplementation of AMPs could promote the growth of mariculture animals such as fish and the underlying mechanism has not been elucidated yet. In the study, a recombinant AMP product of Scy-hepc was used as a dietary supplement (10 mg/kg) to feed mariculture juvenile large yellow croaker (Larimichthys crocea) with an average initial body weight (BW) of 52.9 g for 150 days. During the feeding trial, the fish fed with Scy-hepc showed a significant growth-promoting performance. Especially at 60 days after feeding, fish fed with Scy-hepc weighed approximately 23% more than the control group. It was further confirmed that the growth-related signaling pathways such as the GH-Jak2-STAT5-IGF1 growth axis, the PI3K-Akt and Erk/MAPK pathways were all activated in the liver after Scy-hepc feeding. Furthermore, a second repeated feeding trial was scheduled for 30 days using much smaller juvenile L. crocea with an average initial BW of 6.3 g, and similar positive results were observed. Further investigation revealed that the downstream effectors of the PI3K-Akt pathway, such as p70S6K and 4EBP1, were significantly phosphorylated, suggesting that Scy-hepc feeding might promote translation initiation and protein synthesis processes in the liver. Taken together, as an effector of innate immunity, AMP Scy-hepc played a role in promoting the growth of L. crocea and the underlying mechanism was associated with the activation of the GH-Jak2-STAT5-IGF1 axis, as well as the PI3K-Akt and Erk/MAPK signaling pathways.


Perciformes , STAT5 Transcription Factor , Animals , Antimicrobial Peptides , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Perciformes/metabolism , Fishes/metabolism , Anti-Bacterial Agents/metabolism , Fish Proteins/metabolism
12.
Int J Mol Sci ; 23(21)2022 Nov 01.
Article En | MEDLINE | ID: mdl-36362111

The abuse of antibiotics leads to the increase of bacterial resistance, which seriously threatens human health. Therefore, there is an urgent need to find effective alternatives to antibiotics, and antimicrobial peptides (AMPs) are the most promising antibacterial agents and have received extensive attention. In this study, a novel potential AMP was identified from the marine invertebrate Scylla paramamosain and named Spampcin. After bioinformatics analysis and AMP database prediction, four truncated peptides (Spa31, Spa22, Spa20 and Spa14) derived from Spampcin were screened, all of which showed potent antimicrobial activity with different antibacterial spectrum. Among them, Spampcin56-86 (Spa31 for short) exhibited strong bactericidal activity against a variety of clinical pathogens and could rapidly kill the tested bacteria within minutes. Further analysis of the antibacterial mechanism revealed that Spa31 disrupted the integrity of the bacterial membrane (as confirmed by scanning electron microscopy observation, NPN, and PI staining assays), leading to bacterial rupture, leakage of cellular contents (such as elevated extracellular ATP), increased ROS production, and ultimately cell death. Furthermore, Spa31 was found to interact with LPS and effectively inhibit bacterial biofilms. The antibacterial activity of Spa31 had good thermal stability, certain ion tolerance, and no obvious cytotoxicity. It is worth noting that Spa31 could significantly improve the survival rate of zebrafish Danio rerio infected with Pseudomonas aeruginosa, indicating that Spa31 played an important role in anti-infection in vivo. This study will enrich the database of marine animal AMPs and provide theoretical reference and scientific basis for the application of marine AMPs in medical fields.


Anti-Infective Agents , Brachyura , Animals , Humans , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Peptides , Bacteria/metabolism , Brachyura/metabolism , Microbial Sensitivity Tests , Zebrafish/metabolism
13.
Front Microbiol ; 13: 918191, 2022.
Article En | MEDLINE | ID: mdl-36238589

The gut microbiota plays an important role in animal health and behavior. In marine fish, the composition of the gut microbiota is affected by many complex factors, such as diet, species, and regional factors. Since more than one hundred fish species have been cultured in fish farms along with the 3,324 km coastline of Fujian Province in South China, we chose this region to study the gut microbiota composition of marine commercial fishes because sufficient different species, diets, and regional factors were observed. We investigated the distribution characteristics of the gut microbiota of seven cultured species (Epinephelus akaara, Epinephelus coioides, Epinephelus lanceolatus ♂ × Epinephelus fuscoguttatus ♀, Siganus fuscescens, Pagrus major, Lateolabrax japonicus, and Acanthopagrus schlegelii) living in the same aquatic region and one species (E. akaara) living separately in five regions separated by latitude. The impacts of diet, region, and species factors on fish gut microbiota were also evaluated. Diversity and multivariate analyses showed that the patterns of the microbiota were significantly different in different fish species within the same habitat and E. akaara with five latitude regions. Mantel analysis showed that AN, SiO3 2-, DO, and NO2 - were the principal factors affecting the microbial community of E. akaara in the five habitats. Additionally, similar distribution characteristics occurred in different gut parts of different fishes, with an increasing trend of Proteobacteria and Vibrionaceae abundance and a decreasing trend of Firmicutes and Bacillaceae abundance from the foregut to the hindgut. Vibrionaceae was the most abundant family in the content. This study highlights that a persistent core microbiota was established in marine commercial fishes spanning multiple scales. The factors with the greatest effect on fish gut microbiota may be (i) host genetics and (ii) geographic factors rather than the microbiota in the diet and water environment. These core microbes regularly colonized from the foregut to the hindgut, which was driven by their underlying functions, and they were well adapted to the gut environment. Moreover, the microbiota in the content may have contributed more to the gut microbial communities than previously reported. This study could complement basic data on the composition of marine commercial fishes and facilitate relatively complete investigations, which would be beneficial for the healthy and sustainable development of aquaculture.

14.
Mar Drugs ; 20(10)2022 Oct 20.
Article En | MEDLINE | ID: mdl-36286474

Hepcidin is widely present in many kinds of fish and is an important innate immune factor. A variety of HAMP2-type hepcidins have strong antimicrobial activity and immunomodulatory functions and are expected to be developed as substitutes for antibiotics. In this study, the antimicrobial activity of Hepc2 from Japanese seabass (Lateolabrax japonicus) (designated as LJ-hep2) was investigated using its recombinant precursor protein (rLJ-hep2) expressed in Pichia pastoris and a chemically synthesized mature peptide (LJ-hep2(66-86)). The results showed that both rLJ-hep2 and synthetic LJ-hep2(66-86) displayed broad antimicrobial spectrum with potent activity against gram-negative and gram-positive bacteria, and fungi. Especially, LJ-hep2(66-86) had stronger antimicrobial activity and exhibited potent activity against several clinically isolated multidrug-resistant bacteria, including Acinetobacter baumannii, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae and Enterococcus faecium. Moreover, LJ-hep2(66-86) exerted rapid bactericidal kinetic (killed tested bacteria within 2 h), induced significant morphological changes and promoted agglutination of E. coli, P. aeruginosa and Aeromonas hydrophila. The activity of LJ-hep2(66-86) against E. coli, P. aeruginosa and A. hydrophila was stable and remained active when heated for 30 min. In addition, LJ-hep2(66-86) exhibited no cytotoxicity to the mammalian cell line HEK293T and fish cell lines (EPC and ZF4). In vivo study showed that LJ-hep2(66-86) could improve the survival rate of marine medaka (Oryzias melastigma) by about 40% under the challenge of A. hydrophila, indicating its immunoprotective function. Taken together, both rLJ-hep2 and LJ-hep2(66-86) have good prospects to be used as potential antimicrobial agents in aquaculture and medicine in the future.


Hepcidins , Oryzias , Animals , Humans , Hepcidins/chemistry , Antimicrobial Peptides , Escherichia coli , HEK293 Cells , Bacteria , Anti-Bacterial Agents/pharmacology , Gram-Negative Bacteria , Microbial Sensitivity Tests , Mammals
15.
Front Cell Infect Microbiol ; 12: 928220, 2022.
Article En | MEDLINE | ID: mdl-36061863

Antimicrobial peptides (AMPs) may be the most promising substitute for antibiotics due to their effective bactericidal activity and multiple antimicrobial modes against pathogenic bacteria. In this study, a new functional gene named Spgillcin was identified in Scylla paramamosain, which encoded 216 amino acids of mature peptide. In vivo, Spgillcin was dominantly expressed in the gills of male and female crabs, offering the highest expression level among all tested organs or tissues. The expression pattern of Spgillcin was significantly altered when challenged by Staphylococcus aureus, indicating a positive immune response. In vitro, a functional truncated peptide Spgillcin177-189 derived from the amino acid sequence of Spgillcin was synthesized and showed a broad-spectrum and potent antibacterial activity against several bacterial strains, including the clinical isolates of multidrug-resistant (MDR) strains, with a range of minimum inhibitory concentrations from 1.5 to 48 µM. Spgillcin177-189 also showed rapid bactericidal kinetics for S. aureus and Pseudomonas aeruginosa but did not display any cytotoxicity to mammalian cells and maintained its antimicrobial activity in different conditions. Mechanistic studies indicated that Spgillcin177-189 was mainly involved in the disruption of cell membrane integrity where the membrane components lipoteichoic acid and lipopolysaccharide could significantly inhibit the antimicrobial activity in a dose-dependent manner. In addition, Spgillcin177-189 could change the membrane permeability and cause the accumulation of intracellular reactive oxygen species. No resistance was generated to Spgillcin177-189 when the clinical isolates of methicillin-resistant S. aureus and MDR P. aeruginosa were treated with Spgillcin177-189 and then subjected to a long term of continuous culturing for 50 days. In addition, Spgillcin177-189 exerted a strong anti-biofilm activity by inhibiting biofilm formation and was also effective at killing extracellular S. aureus in the cultural supernatant of RAW 264.7 cells. Taken together, Spgillcin177-189 has strong potential as a substitute for antibiotics in future aquaculture and medical applications.


Brachyura , Methicillin-Resistant Staphylococcus aureus , Animals , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/genetics , Antimicrobial Cationic Peptides/pharmacology , Arthropod Proteins/metabolism , Bacteria/metabolism , Brachyura/genetics , Female , Male , Mammals/metabolism , Microbial Sensitivity Tests , Staphylococcus aureus/physiology
16.
JACS Au ; 2(7): 1661-1668, 2022 Jul 25.
Article En | MEDLINE | ID: mdl-35911451

In order to study the emergence of homochirality during complex molecular systems, most works mainly concentrated on the resolution of a pair of enantiomers. However, the preference of homochiral over heterochiral isomers has been overlooked, with very limited examples focusing only on noncovalent interactions. We herein report on diastereomeric discrimination of twin-cavity cages (denoted as diphanes) against heterochiral tris-(2-aminopropyl)amine (TRPN) bearing triple stereocenters. This diastereomeric selectivity results from distinct spatial orientation of reactive secondary amines on TRPN. Homochiral TRPNs with all reactive moieties rotating in the same way facilitate the formation of homochiral and achiral meso diphanes with low strain energy, while heterochiral TRPNs with uneven orientation of secondary amines preclude the formation of cage-like entity, since the virtual diphanes exhibit considerably high strain. Moreover, homochiral diphanes self-assemble into an acentric superstructure composed of single-handed helices, which exhibits interesting nonlinear optical behavior. Such a property is a unique occurrence for organic cages, which thus showcases their potential to spawn novel materials with interesting properties and functions.

17.
Front Immunol ; 13: 946227, 2022.
Article En | MEDLINE | ID: mdl-35874773

Crustins are the most abundant class of antimicrobial peptides in crustaceans and are essential for protecting animals from infection. Among them, type II crustins usually exhibit potent antimicrobial activity. Interestingly, in this study, a newly identified type II crustin gene homolog (named SpCrus8) from mud crab Scylla paramamosain, the recombinant proteins of which (rSpCrus8 and rTrx-SpCrus8) showed no obvious antibacterial effects, but could significantly reduce the bacterial load in crab hemolymph and improve the survival rate of crabs infected with Vibrio alginolyticus. The immune-related function of SpCrus8 and the underlying mechanism deserve further investigation. It was found that the SpCrus8 gene was widely distributed in various tissues of adult crabs. In the hepatopancreas of crabs infected with V. alginolyticus or Staphylococcus aureus, transcripts of the SpCrus8 gene were remarkably induced, indicating that the SpCrus8 gene was involved in the immune response to bacterial infection in vivo. In addition, rSpCrus8 and rTrx-SpCrus8 had strong binding activity not only to microbial surface components (lipopolysaccharide, lipoteichoic acid, peptidoglycan, and glucan), but also to the tested bacteria (S. aureus, Pseudomonas aeruginosa and V. alginolyticus). Notably, rSpCrus8 and rTrx-SpCrus8 could significantly promote hemocyte phagocytosis. After rSpCrus8 and rTrx-SpCrus8 treatment, a large number of fluorescent microspheres were observed to aggregate into clusters and be phagocytosed by multiple hemocytes, while hemocytes in the control group phagocytosed only individual microspheres, indicating that SpCrus8 played an important role in opsonization. When the SpCrus8 gene was knocked down, the expression levels of the key phagocytosis-related genes SpRab5 and SpRab7 were significantly downregulated, as well as the IMD signaling pathway genes SpIKKß and SpRelish, and another crustin gene SpCrus5. Correspondingly, all the SpIKKß, SpRelish and SpCrus5 genes were significantly upregulated after rSpCrus8 treatment, suggesting that SpCrus8 might be involved in the immunomodulation of S. paramamosain. Taken together, this study revealed the immune-related functions of the SpCrus8 gene in opsonization and regulation, which will help us further understand the role of the crustin gene family in the immune system of mud crabs and provide new insights into the function of type II crutins.


Brachyura , Staphylococcal Infections , Animals , Antimicrobial Cationic Peptides , Arthropod Proteins , Gene Expression Regulation , Immunity, Innate/genetics , Immunomodulation , Opsonization , Staphylococcus aureus
18.
Exp Ther Med ; 24(2): 509, 2022 Aug.
Article En | MEDLINE | ID: mdl-35837048

The existence of endoplasmic reticulum (ER) stress in neurodegenerative diseases has been well established. Tauroursodeoxycholic acid (TUDCA) is a bile acid taurine conjugate derived from ursodeoxycholic acid, which has been reported to exert cytoprotective effects on several types of cells by inhibiting ER stress. The present study explored the effects of TUDCA on primary cultured rat dorsal root ganglion (DRG) neurons. Cell viability and apoptosis of DRG neurons treated with TUDCA and tunicamycin were detected by CellTiter-Blue assay and TUNEL staining, respectively. The protein levels and phosphorylation of apoptosis and ERS-related signaling pathway molecules were detected by western blot, and the mRNA levels of related genes were assessed by reverse transcription-quantitative PCR. Notably, TUDCA had no significant cytotoxic effect on DRG neurons at concentrations ≤250 µM. In addition, the apoptosis induced by tunicamycin exposure was markedly suppressed by TUDCA, as indicated by the percentage of TUNEL-positive cells, the activities of caspases and the changes in expression levels of critical apoptosis factors. Furthermore, the cytotoxicity of tunicamycin in DRG neurons was accompanied by an increase in malondialdehyde (MDA) content, reactive oxygen species (ROS) and lactate dehydrogenase (LDH) production, and a decrease in glutathione (GSH) levels. The changes in oxidative stress-related factors (ROS, LDH, MDA and GSH) were reversed by TUDCA. Furthermore, as determined by western blotting, the increase in C/EBP homologous protein, glucose-regulated protein 78 and cleaved caspase-12 expression following tunicamycin treatment suggested the activation of ER stress. Downregulation of ER stress components and unfolded protein response sensors by TUDCA confirmed the implication of ER stress in the effects of TUDCA on DRG neurons. In conclusion, the present study indicated that TUDCA may protect against tunicamycin-induced DRG apoptosis by suppressing the activation of ER stress. The protective effect and the therapeutic value of TUDCA in nervous system injury require further study in animal models.

19.
Cell Rep ; 40(2): 111061, 2022 07 12.
Article En | MEDLINE | ID: mdl-35830793

Although frameshift mutations lead to 22% of inherited Mendelian disorders in humans, there is no efficient in vivo gene therapy strategy available to date, particularly in nondividing cells. Here, we show that nonhomologous end-joining (NHEJ)-mediated nonrandom editing profiles compensate the frameshift mutation in the Pcdh15 gene and restore the lost mechanotransduction function in postmitotic hair cells of Pcdh15av-3J mice, an animal model of human nonsyndromic deafness DFNB23. Identified by an ex vivo evaluation system in cultured cochlear explants, the selected guide RNA restores reading frame in approximately 50% of indel products and recovers mechanotransduction in more than 70% of targeted hair cells. In vivo treatment shows that half of the animals gain improvements in auditory responses, and balance function is restored in the majority of injected mutant mice. These results demonstrate that NHEJ-mediated reading-frame restoration is a simple and efficient strategy in postmitotic systems.


Cadherin Related Proteins , Hearing Loss, Sensorineural , Protein Precursors , Animals , CRISPR-Cas Systems , Cadherin Related Proteins/genetics , Disease Models, Animal , Gene Editing , Hearing Loss, Sensorineural/genetics , Hearing Loss, Sensorineural/pathology , Humans , Mechanotransduction, Cellular , Mice , Protein Precursors/genetics
20.
Physiol Meas ; 43(7)2022 07 18.
Article En | MEDLINE | ID: mdl-35724654

Introduction. Epileptic seizures are common neurological disorders in the world, impacting 65 million people globally. Around 30% of patients with seizures suffer from refractory epilepsy, where seizures are not controlled by medications. The unpredictability of seizures makes it essential to have a continuous seizure monitoring system outside clinical settings for the purpose of minimizing patients' injuries and providing additional pathways for evaluation and treatment follow-up. Autonomic changes related to seizure events have been extensively studied and attempts made to apply them for seizure detection and prediction tasks. This scoping review aims to depict current research activities associated with the implementation of portable, wearable devices for seizure detection or prediction and inform future direction in continuous seizure tracking in ambulatory settings.Methods. Overall methodology framework includes 5 essential stages: research questions identification, relevant studies identification, selection of studies, data charting and summarizing the findings. A systematic searching strategy guided by systematic reviews and meta-analysis (PRISMA) was implemented to identify relevant records on two databases (PubMed, IEEE).Results. A total of 30 articles were included in our final analysis. Most of the studies were conducted off-line and employed consumer-graded wearable device. ACM is the dominant modality to be used in seizure detection, and widely deployed algorithms entail Support Vector Machine, Random Forest and threshold-based approach. The sensitivity ranged from 33.2% to 100% for single modality with a false alarm rate (FAR) ranging from 0.096 to 14.8 d-1. Multimodality has a sensitivity ranging from 51% to 100% with FAR ranging from 0.12 to 17.7 d-1.Conclusion. The overall performance in seizure detection system based on non-cerebral physiological signals is promising, especially for the detection of motor seizures and seizures accompanied with intense ictal autonomic changes.


Epilepsy , Wearable Electronic Devices , Algorithms , Electroencephalography/methods , Epilepsy/diagnosis , Humans , Seizures/diagnosis
...